SYNTHÈSE TOTALE STÉRÉOSPÉCIFIQUE DE LA (†) OXO-6 SILICINE ou oxo-6 descarbométhoxy-16 épi-20 ervatamine 1

Francisco Reis, Kiyoshi Bannai et Henri-Philippe Husson*

(Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif/Yvette, France)

(Received in France 2 February 1976; received in UK for publication 24 February 1976)

Nous décrivons dans cette communication la synthèse totale stéréospécifique de l'oxo-6 silicine 10, alcaloïde α -acylindolique isolé d'une Apocynacée malgache <u>Hazunta silicicola</u> Pichon^{2,3}. Ce travail constitue la première synthèse totale d'un dérivé α -acylindolique naturel de la série dihydrovobasine-ervatamine $\frac{4}{3}$.

Lors de la plupart des synthèses déjà réalisées, le groupement α -acylindolique est introduit en dernier lieu ; la particularité du schéma présenté ici est de le créer dès le départ par condensation du dérivé lithié d'une χ -picoline sur le carbométhoxy-2 indole. La seconde phase de la synthèse consiste à cycliser sur la position $C_{(7)}$ du noyau indolique un groupement convenable porté par le cycle pyridine.

La condensation du dérivé lithié de l'hydroxyméthyl-3 méthyl-4 éthyl-5 pyridine sur $\underline{1}^9$, suivie de l'hydrolyse alcaline du groupement protecteur onduit au dérivé α -acylindolique $\underline{2}$: F 195° (acétone); I.R.(CHCl $_3$): 3150, 2800, 1680 cm $^{-1}$; U.V.: $\lambda_{\max}^{\text{EtOH}}(\log \mathbf{E})$ 224(4,1), 236(4,01), 273(3,68), 310 (4,27); R.M.N.(CDCl $_3$): δ 4,54 2 H $_{(6)}$ \underline{s} , 4,68 2 H $_{(14)}$ \underline{s} , 8,41 4 H $_{(21)}$ \underline{s} , 8,44 4 H $_{(5)}$ \underline{s} , 9,12 8 H $_{m}$.

L'oxydation de $\underline{2}$ par MnO $_2$ ne conduit pas à l'aldéhyde attendu mais à la lactone d'énol $\underline{3}$ (Rdt 95%) : F > 270° (méthanol) ; I.R. (nujol) : 1740, 1634 cm $^{-1}$; U.V.: $\lambda_{\max}^{\text{EtOH}}(\log \mathbf{E})$ 230(4,22), 269(3,86), 382(4,39) ; R.M.N. (DMSO): & 7,23 H $_{(7)}$ \underline{d} (J=2), 7.50 H $_{(14)}$ \underline{s} , 8,50 H $_{(21)}$ \underline{s} , 8,76 H $_{(5)}$ \underline{s} .

La genèse de <u>3</u> s'explique par l'oxydation de l'alcool primaire en C₍₆₎ en un aldéhyde intermédiaire conduisant à un lactol oxydé en lactone <u>3</u>.

Pour éviter les réactions de voisinage entre les fonctions portées par le $C_{(6)}$ et $C_{(3)}$, la transformation de la cétone en $C_{(3)}$ est nécessaire. Pour cela, $\underline{2}$ est réduit en diol^{11} par NaBH_4 . Le diol diacétylé est ensuite partiellement hydrolysé par NaBH_4 en dérivé monoacétylé \underline{h} (Rdt 70% à partir de $\underline{2}$) : amorphe, $\operatorname{I.R.}(\operatorname{CHCl}_3)$: 1735 cm⁻¹ ; $\operatorname{R.M.N.}(\operatorname{CDCl}_3)$: 6 1,95 CH_3 -C=0 \underline{s} , 6,28 $\operatorname{H}_{(3)}$ \underline{dd} (J = 8,5 ; J' = 5), 6,55 $\operatorname{H}_{(7)}$ \underline{d} (J = 2).

Le dérivé $\frac{4}{2}$ est oxydé par MnO $_2$ en aldéhyde $\frac{5}{2}$ (Rdt 94%) : hulle peu stable, I.R.(film) : 1745, 1700 cm $^{-1}$; R.M.N.(CDCl $_3$) : $\frac{5}{2}$ 10,23 H $_{(6)}$ s.

L'agitation d'une solution de l'aldéhyde <u>5</u> dans le T.H.F. en présence d'alumine conduit au dérivé tétracyclique <u>6</u> (Rdt 85%) amorphe :

R.M.N.(CDC1₃): δ 6,13 H₍₆₎ s, 6,23 H₍₃₎ \underline{dd} (J = 8,5; J' = 5). Cette réaction, effectuée dans des conditions douces, a l'avantage de ne pas provoquer l'hydrolyse du groupement acétyle et d'éviter ainsi la formation concurrentielle d'un hémiacétal entre les fonctions portées par C₍₃₎ et C₍₆₎.

Le traitement de $\frac{6}{2}$ par MnO₂ conduit à $\frac{7}{2}$ (Rdt 60%) : F 263° (méthanol), I.R.(nujol) : 1755, 1620, 1590 cm⁻¹.

La quaternarisation de $N_{(4)}$ de 7 par ICH $_3$ sulvie d'une réduction par NaBH $_4$ conduit à 8 (Rdt 50%). L'absence de protons oléfiniques en R.M.N. laisse deux possibilités pour une double liaison tétrasubstituée : $C_{(15)} = C_{(16)}$ ou $C_{(15)} = C_{(20)}$. La bonne résolution des signaux correspondant aux protons de la chaîne éthyle (absence de proton en $C_{(20)}$) et leurs déplacements chimiques permettent de choisir la position $C_{(15)} = C_{(20)}$. Il existe, en fait, d'après le spectre de R.M.N.(CDCl $_3$) un mélange d'épimères, dans le rapport 7/3 ; cette proportion est modifiée (5/5) par introduction de D_2 0. Il s'agit vraisemblablement de l'épimérisation facile du proton en $C_{(16)}$.

La double liaison de $\underline{8}$ est facilement hydrogénée en présence de PtO₂. Le composé $\underline{9}$, seul obtenu, est identique (F, S.M., I.R., U.V., R.M.N., C.C.M.) au composé de réduction par NaBH₄ du produit naturel $\underline{10}$. La transformation de $\underline{9}$ en ($\frac{1}{2}$) oxo-6 silicine est effectuée par oxydation avec MnO₂ (Rdt $\underline{80\%}$).

L'hydrogénation de la double liaison $C_{(15)} = C_{(20)}$ conduit à une configuration relative cis des protons en $C_{(15)}$ et $C_{(20)}$; d'autre part, l'équilibre céto-énolique conduit au produit thermodynamiquement le plus stable, c'est-à-dire ayant une jonction de cycles cis 3. Ces raisons expliquent l'obtention stéréospécifique du produit naturel $\underline{10}$.

La méthode de synthèse décrite dans cette communication est susceptible de généralisation pour la préparation des alcaloïdes de la série dihydrovobasine-ervatamine.

REMERCIEMENTS

Les auteurs remercient Monsieur P. Potier, Directeur de l'Institut de Chimie des Substances Naturelles du C.N.R.S., pour les discussions suscitée par ce travail.

RÉFÉRENCES ET NOTES

- Cette publication fait partie de la Thèse de Doctorat d'Etat ès Sciences Physiques de F. Reis, soutenue le 12 Janvier 1976 à l'Université de Paris-Sud (Centre d'Orsay).
- 2. A.-M. Bui, M.-M. Debray, P. Boiteau et P. Potier, <u>Phytochemistry</u>, à paraître.
- 3. A.-M. Bui, G. Massiot, B.-C. Das et P. Potier, à paraître.

- 4. A. Husson, Y. Langlois, C. Riche, H.-P. Husson et P. Potier, <u>Tetrahedron</u>, 29, 3095 (1973).
- Synthèses d'analogues structuraux : T. Shiori et S. Yamada, <u>Tetrahedron</u>, 24, 4159 (1968); R.J. Sundberg, W.V. Ligon et L.S. Lin, <u>J. Org. Chem.</u>, 36, 2471 (1971); Y. Langlois et P. Potier, <u>Tetrahedron</u>, 31, 419, 423 (1975).
- 6. Pour simplifier, les intermédiaires de synthèse sont numérotés selon la nomenclature biogénétique^{4,7}: on tient compte de la position que l'atome occupera dans le produit naturel envisagé.
- 7. J. Le Men et W.I. Taylor, Experientia, 21, 508 (1965).
- L'hydroxyméthyl-3 méthyl-4 éthyl-5 pyridine est obtenue par réduction par AlLiH4 du dérivé carbométhoxy-3 préparé selon : T.R. Govindachari, K. Nagarajan et S. Rajappa, <u>J. Chem. Soc.</u>, 551 (1957).
- 9. R.J. Sundberg et H.F. Russel, J. Org. Chem., 38, 3324 (1973).
- 10. Le rendement en produit condensé est d'environ 50% après chromatographie sur colonne de silice qui permet d'autre part de récupérer les matières premières non transformées (30%). L'élimination du groupement protecteur (reflux dans la soude méthanolique 2N) est effectuée avec un rendement de 85%.
- 11. Le même diol est obtenu en réduisant $\underline{\mathbf{3}}$ par le borohydrure de sodium en solution dans le méthanol.
- 12. Les produits caractérisés par leur formule moléculaire ont donné des résultats microanalytiques à ± 0,3% de la théorie pour C et à 1% pour H, N et O. Les spectres de masse sont en accord avec les structures proposées